[파이낸셜뉴스] "고객이 안심하고 전기차를 이용할 수 있도록 안전성 강화 기술을 고도화하고, 배터리 시장 경쟁력 강화에 기여할 것입니다." LG화학은 1일 최고기술책임자(CTO) 산하 기반기술연구소 연구팀이 열폭주를 억제하는 온도 반응성 ‘안전성 강화 기능층이하 열폭주 억제 소재)’을 개발했다고 밝혔다. 포항공과대학교(POSTECH) 배터리공학과 이민아 교수 연구팀과 공동 연구를 통해 소재 해석을 진행했고, 안전성 검증은 LG에너지솔루션이 함께 참여했다. LG화학은 이번 연구 성과를 세계 최상위 학술지 네이처 커뮤니케이션즈 9월호에 온라인 게재됐다. LG화학이 개발한 열폭주 억제 소재는 온도에 따라 전기 저항이 변하는 복합 물질로, 온도가 오르는 초기 단계에서 전기 흐름을 차단하는 ‘퓨즈’ 역할을 한다. 연구팀은 열폭주 억제 소재를 배터리의 양극층과 집전체(전자의 통로 역할을 하는 알루미늄 포일) 사이에 머리카락 100분의 1 수준인 1마이크로미터(um) 두께의 얇은 층 형태로 만들었다. 전지에 이상이 발생해 온도가 90~130도 수준으로 정상 범위를 벗어나면, 소재가 온도에 반응해 결합 구조가 바뀌며 전류의 흐름을 억제하는 구조다. 열폭주 억제 소재는 온도가 1도 올라갈 때마다 전기 저항이 5000옴(Ω)씩 상승해 온도에 대한 반응속도가 빠르다. 최대 저항은 정상 온도일 때보다 무려 1,000배 이상 높고, 온도가 내려가면 다시 저항이 낮아져 원래의 전기가 통하는 상태로 돌아오는 가역성까지 갖췄다. 전기차 배터리 화재의 주요 원인인 열폭주는 전지 내부의 양극과 음극이 의도치 않게 직접 접촉해 단락과 발열이 발생하며 시작되는 것으로 알려져 있다. 수 초 만에 온도가 1000도 가까이 치솟으며 화재가 이어지는 만큼, 발열 초기에 빠르게 반응 경로를 차단하는 열폭주 억제 소재가 화재 방지에 효과적일 것으로 기대된다. 실제로 배터리 충격 실험과 관통 실험 모두에서, 열폭주 억제 소재를 적용한 배터리는 불이 붙지 않거나, 불꽃이 발생한 뒤 곧바로 꺼져 열폭주 현상이 발생하지 않았다. 모바일용 리튬·코발트·산화물(LCO) 배터리에 못으로 구멍을 뚫는 관통 실험에서, 일반 배터리는 전체 중 16% 만이 화재가 발생하지 않았지만 열폭주 억제 소재를 적용한 배터리는 단 한 건의 화재도 발생하지 않은 것으로 나타났다. 전기차용 니켈·코발트·망간(NCM) 배터리에 약 10kg의 무게추를 떨어뜨리는 충격 실험에서는 일반 배터리의 경우 모두 화재가 발생했다. 반면, 열폭주 억제소재를 적용한 배터리는 70% 비율로 화재가 발생하지 않았고, 30%는 불꽃이 발생했지만 수 초 내로 꺼지는데 그쳤다. 기존에도 셀 내부에 온도 변화에 반응하는 소재를 넣는 방식은 있었지만, 반응 속도가 느리거나 에너지 밀도가 떨어지는 문제가 있었다. LG화학은 소재 설계에 대한 기술력과 특허를 보유하고 있어 기존 문제를 해결하면서도 빠르게 양산 공정에 적용할 수 있는 수준의 소재 개발에 성공했다. LG화학은 모바일용 배터리에 열폭주 억제 소재 안전성 검증 테스트를 마치고, 내년까지 대용량 전기차용 배터리에도 안전성 테스트를 이어갈 계획이다. LG화학 이종구 CTO는 “양산 공정까지 빠른 시일 내 제품에 적용할 수 있는 가시적인 연구 성과”라며 “고객이 안심하고 전기차를 이용할 수 있도록 안전성 강화 기술을 고도화하고, 배터리 시장 경쟁력 강화에 기여할 것”이라고 말했다. yon@fnnews.com 홍요은 기자
2024-10-01 12:07:39[파이낸셜뉴스] 울산과학기술원(UNIST) 연구진이 1㎡까지 키운 페로브스카이트 태양전지 모듈로 물에서 수소를 만드는데 성공했다. 특히 자외선과 수분에 취약한 페로브스카이트 태양전지의 안정성 문제를 해결했으며, 태양광수소 전환효율 10% 이상을 달성했다. 6일 UNIST에 따르면, 연구진이 개발한 그린수소 생산 광전극은 에너지화학공학과 이재성·장지욱·석상일 교수와 탄소중립대학원 임한권 교수팀이 공동 개발해 에너지 분야 최고의 학술지인 '네이처 에너지(Nature Energy)'에 발표했다. 이번 연구에 참여한 한소라 박사는 "이번에 개발한 광전극은 대면적에서도 높은 효율을 유지했다"며 "앞으로 그린수소 생산의 실용화를 위한 현장실증에 집중한다면 2030년 이전에 태양광을 이용한 그린수소 기술이 상용화가 될 것"이라고 전망했다. 태양광 수소 기술은 지구상에서 가장 풍부한 재생에너지인 태양에너지를 이용해 물을 분해해 수소를 얻는 이상적인 그린수소 생산기술이다. 연구진은 이를 위해 효율 높고 비교적 값이 싼 페로브스카이트를 광전극 소재로 사용했다. 그러나 페로브스카이트 태양전지는 태양광에 포함된 자외선과 공기 중의 수분에 대한 안정성이 떨어진다. 연구진은 물을 분해해 수소를 만들기 위해선 광전극을 물속에 넣어야 하는데, 이 두 가지 문제점을 모두 개선했다. 우선 자외선 문제은 페로브스카이트의 양이온으로 기존의 메칠암모늄 대신 포름아미디늄을 사용해 해결했다. 또 물과의 접촉면을 니켈 포일로 완전 봉인해 물속에서도 안정성을 유지하도록 제작했다. 또 1㎠ 미만의 소형인 연구개발용 광전극을 1만배 정도 스케일업 해 실용화 규모인 1㎡까지 키웠다. 연구진은 "이때 스케일업 과정에서 수소생산 효율이 감소하기 때문에 이를 최소화하는 기술도 필요하다"고 설명했다. 이를위해 작은 광전극들을 일정한 크기로 연결해 배치하는 '모듈 기반 설계'를 활용했다. 소형 광전극을 블록을 쌓는 것처럼 가로, 세로로 반복해서 연결해 대면적의 광전극을 제조한다. 이렇게 스케일업한 모듈로 상용화를 위한 최소 조건인 태양광수소 전환효율 10% 이상을 달성했다. 연구진은 "이같은 결과는 대면적 광전극에서 세계 최고 효율"이라고 말했다. 또한 "이번 성과로 2050년까지 탄소중립을 실현하는데 크게 기여할 수 있는 경쟁력 있는 그린 수소 생산 방법을 확보할 수 있으며, 세계 에너지 시장에서 선도적인 역할을 할 수 있을 것"이라고 전망했다. monarch@fnnews.com 김만기 기자
2024-02-06 09:47:08【파이낸셜뉴스 울산=최수상 기자】 UNIST 장지욱·양창덕·조승호 교수팀은 유기 반도체 물질을 물로부터 효과적으로 보호하는 ‘모듈시스템’을 이용해 성능과 안정성이 모두 우수한 광전극을 개발했다고 9일 밝혔다. 기존 무기 반도체 기반 광전극 보다 수소 생산 효율이 2배 이상 높을 뿐만 아니라 대면적 제조가 가능해 가격 측면에서도 유리하다. 따라서 광전극을 물에 넣고 햇볕을 쪼여 수소를 얻는 ‘태양광 수소’ 시대가 더 앞당겨질 전망이다. 태양광 수소 생산에 쓰이는 광전극은 태양광 에너지를 흡수해 전하 입자를 만드는 반도체 물질로 이뤄졌다. 생성된 전하 입자가 전극 표면에서 물과 반응해 수소와 산소를 만드는 것이 태양광 수소 생산의 원리다. 반응이 물속에서 일어나기 때문에 안정한 금속산화물 무기 반도체 광전극이 주로 연구됐다. 반면 유기 반도체 물질은 수소 생산 효율은 훨씬 높지만 물 안에서 빠르게 손상된다는 문제가 있어 광전극으로 쓰이지 못했다. 이에 공동연구팀은 액체금속(인듐-칼륨 합금), 니켈포일, 그리고 니켈 포일위에서 바로 자란 촉매(니켈-철 이중층 수산화물)로 구성된 모듈시스템을 이용해 물속에 안정한 유기 반도체 광전극을 만들었다. 니켈포일은 물이 유기반도체와 직접적으로 접촉하는 것을 막고, 포일위에 바로 성장시킨 촉매가 전체 반응을 돕는다. 또 니켈포일과 유기반도체 사이를 메우는 물질이 액체 금속이기 때문에 물은 빈틈없이 차단하면서도 전하 입자의 흐름은 막지 않는다. 실험에서는 새로운 광전극의 수소 생산 효율(반쪽 전지 효율)이 기존 무기 반도체 광전극의 2배 이상인 4.33%를 기록했다. 에너지화학공학과 장지욱 교수는 “높은 효율을 갖는 유기물을 광전극에 적용할 수 있다는 가능성을 보인 연구” 라며 “기존에 효율 측면에서 한계가 있었던 태양광 수소 전환 기술의 상용화를 앞당길 수 있을 것”이라고 기대했다. 에너지화학공학부 양창덕 교수는 “유기 반도체는 무기 반도체와 달리 무궁무진한 조합을 만들 수 있어 효율이 더 높은 새로운 유기 반도체 물질을 계속 발굴 할 수 있다”며 “이 때문에 추가적 성능 향상이 기대된다”고 전했다. 신소재공학과 조승호 교수는 “이번에 개발된 시스템은 하나의 모듈로써 니켈 포일위에 자란 촉매나 유기 반도체의 종류를 바꿔 쓸 수 있는 것이 장점”이라며 “ 현재 전하 이동을 돕는 새로운 촉매에 대한 연구를 계속 해나가고 있다”고 설명했다. 이번 연구 성과는 네이쳐 커뮤니케이션즈(Nature Communications) 11월 2일자로 공개됐다. 유제민 UNIST 석박통합과정 대학원생, 이정호 UNIST 박사(現 퍼듀대학교 박사 후 연구원), 김윤서 UNIST 석박통합과정 대학원생이 공동 1저자로 참여했다. ulsan@fnnews.com 최수상 기자
2020-11-09 11:27:03[파이낸셜뉴스] 국내 연구진이 물에 햇볕을 쪼여 수소를 만드는 유기 반도체 기반의 광전극을 안정적이면서도 효율이 높게 개발했다. 연구진은 기존 무기 반도체 기반 광전극 보다 수소 생산 효율이 2배 이상 높을 뿐만 아니라 대면적 제조가 가능해 가격 측면에서도 유리하다고 설명했다. 울산과학기술원(UNIST)은 장지욱·양창덕·조승호 교수팀이 유기 반도체 물질을 물로부터 효과적으로 보호하는 '모듈시스템'을 이용해 광전극을 개발했다고 9일 밝혔다. 새로운 광전극의 수소 생산 효율은 기존 무기 반도체 광전극의 2배 이상인 4.33%를 기록했다. 에너지화학공학과 장지욱 교수는 "높은 효율을 갖는 유기물을 광전극에 적용할 수 있다는 가능성을 보인 연구로 기존에 효율 측면에서 한계가 있었던 태양광 수소 전환 기술의 상용화를 앞당길 수 있을 것"이라고 기대했다. 태양광 수소 생산에 쓰이는 광전극은 태양광 에너지를 흡수해 전하 입자를 만드는 반도체 물질로 이뤄졌다. 생성된 전하 입자가 전극 표면에서 물과 반응해 수소와 산소를 만드는 것이 태양광 수소 생산의 원리다. 반응이 물속에서 일어나기 때문에 안정한 금속산화물 무기 반도체 광전극이 주로 연구됐다. 반면 유기 반도체 물질은 수소 생산 효율은 훨씬 높지만 물 안에서 빠르게 손상된다는 문제가 있어 광전극으로 쓰이지 못했다. 연구진은 인듐-칼륨을 합한 액체금속, 니켈포일, 그리고 니켈 포일위에서 니켈-철 이중층 수산화물이 바로 자란 촉매로 구성된 모듈시스템을 이용해 유기 반도체 광전극을 만들었다. 니켈포일은 물이 유기반도체와 직접적으로 접촉하는 것을 막고, 포일 위에 바로 성장시킨 촉매가 전체 반응을 돕는다. 또 니켈포일과 유기반도체 사이를 메우는 물질이 액체 금속이라 물은 빈틈없이 차단하면서도 전하 입자의 흐름은 막지 않는다. 에너지화학공학부 양창덕 교수는 "유기 반도체는 무기 반도체와 달리 무궁무진한 조합을 만들 수 있어 효율이 더 높은 새로운 유기 반도체 물질을 계속 발굴 할 수 있에 추가적 성능 향상이 기대된다"고 말했다. 신소재공학과 조승호 교수는 "현재 전하 이동을 돕는 새로운 촉매에 대한 연구를 계속 해나가고 있다"고 말했다. 유제민 UNIST 석박통합과정 대학원생, 퍼듀대학교 이정호 박사후연구원, 김윤서 UNIST 석박통합과정 대학원생이 공동 1저자로 참여한 이번 연구 성과는 '네이쳐 커뮤니케이션즈' 2일자로 공개됐다. monarch@fnnews.com 김만기 기자
2020-11-09 11:17:29【울산=최수상 기자】 UNIST 연구진이 나노 물질 신소재인 ‘단결정 그래핀’을 빠르게 제작하는 방법을 개발해 주목을 받고 있다. UNIST 자연과학부 로드니 루오프 특훈교수(IBS 다차원 탄소재료 연구단장) 연구팀은 ‘단결정 구리-니켈 합금 포일(foil)’을 이용해 단결정 그래핀의 성장 속도를 약 10배 이상 높일 수 있는 기술을 개발해 ACS Nano에 게재했다고 24일 밝혔다. UNIST에 따르면 현재까지 그래핀 제작에는 주로 다결정 구리 기판을 촉매로 사용했다. 촉매인 구리 위에 메탄(CH₄)과 수소(H₂) 혼합 가스를 흘리면, 탄소(C)만으로 이뤄진 그래핀이 형성된다. 이때 바탕이 되는 구리의 결정 방향(crystal orientation)이 다양하므로 그래핀 역시 결정의 방향이 여럿인 ‘다결정 그래핀’으로 자라난다. 하지만 다결정 그래핀은 탄소 원자로 이뤄진 결정립(crystal grain)들이 서로 어긋나있어 그래핀의 우수한 전기전자도와 전하이동도 등의 특성이 저하될 수 있다. 이에 과학자들은 결정이 한 방향으로 정렬된 단결정 그래핀을 만들어 그래핀의 특성을 올곧게 활용할 방법을 찾아왔다. 밍 후앙 UNIST 신소재공학부 박사과정 연구원(IBS 다차원 탄소재료 연구단 소속)은 “최근 그래핀과 격자 구조가 비슷한 ‘구리(111) 단결정’을 기판으로 쓰는 에피택시(epitaxy) 방식이 시도되고 있다”며 “바탕이 되는 구리(111)의 결정 방향이 일정하고, 격자 구조가 비슷해 단결정에 가까운 그래핀을 성장시킬 수 있다”고 설명했다. 루오프 교수팀은 여기서 한 발 더 나아가 구리(111) 단결정 포일에 니켈을 더한 ‘구리-니켈(111) 단결정 합금 포일’을 만들고 이를 기판으로 사용했다. 이 기판에서는 그동안 약 60분 동안 소요되는 그래핀을 5분 만에 만들 수 있었다. 한편 그래핀(graphene)은 탄소 원자로만 이루어진 탄소 동소체다. 두께가 약 0.2나노미터(㎚, 1㎚=10억 분의 1m)에 불과하지만 기계적 강도가 강철의 200배에 이른다. 잘 부러지지 않으면서도 잘 휘어지고 구리보다 10배 더 전기가 잘 통하고 실리콘보다 전자 이동 속도가 100배 빠른 나노 물질 신소재다. 연구팀은 또 그래핀 단일층에서 약 40㎚(나노미터·10억 분의 1m) 너비의 접힘선(fold)을 발견했다. 연구팀은 그래핀 성장이 완성되지 않았을 때 듬성듬성 생기는 그래핀 섬(graphene islands)들이 서로 결합하는 영역에서 그래핀 접힘선이 형성되는 장면을 세계 최초로 관찰했다. 금속 기판 냉각 때 그래핀에 주름이 지듯 3층 구조의 접힘선이 나타난 것이다. 루오프 교수는 "금속 기판은 고온에서 팽창하고 냉각 때 줄어드는데, 그래핀은 냉각에도 별로 변하지 않아 접힘선이 생기는 것"이라면서 "특히 그래핀 섬이 만나는 지점에서 압축응력이 집중돼 접힘선이 발생하는데, 이번에 처음으로 접힘선의 존재를 확인했다"고 밝혔다. 그는 "이번 연구에서 구리-니켈 단결정 포일의 표면 초격자구조를 규명하고, 이를 이용한 그래핀의 고속 성장과 그래핀 접힘선의 3층 구조를 세계 최초로 규명했다"면서 "그래핀 섬들이 결합하면서 나타나는 현상은 다른 2차원 재료와 박막 연구에 도움이 될 것"이라고 덧붙였다. ulsan@fnnews.com 최수상 기자
2018-05-24 14:17:32