[파이낸셜뉴스] 전기전도도가 우수한 그래핀으로 만들어진 새로운 '메조(meso)다공성' 탄소가 국내 연구진에 의해 개발됐다. 연구진은 그래핀 메조다공성 탄소가 차세대 에너지 생산 및 저장 장치의 상용화를 앞당기는 데 크게 기여할 것이라고 설명했다. 울산과학기술원(UNIST)은 화학과 주상훈 교수 연구팀이 한국과학기술연구원(KIST) 김진영 박사팀과의 공동연구를 통해 그래핀 튜브(탄소 나노튜브)가 규칙적 연결된 '그래핀 골격 메조다공성 탄소(OMGC)'를 합성하는 데 성공했다고 17일 밝혔다. 주상훈 교수는 "새롭게 개발한 소재는 메조다공성 탄소, 그래핀, 탄소 나노튜브의 장점을 결합한 물질"이라며 "에너지 변환장치용 촉매 또는 촉매 지지체, 에너지 저장장치, 이산화탄소 흡착제, 오염물질 흡착제 등에 다양하게 응용될 것"이라고 전망했다. 메조다공성 탄소는 기공 크기가 일정하고 균일하게 배열된 탄소 나노물질로 반응 표면적이 넓어 촉매로서 유리하지만 전기전도도가 낮다. 연구진은 전기전도도를 높이기 위해 '메조다공성 실리카'와 '몰리브데늄 카바이드'를 틀로 사용하는 '이중 주형법'을 고안했다. 제1저자인 백두산 화학공학과 박사과정 연구원은 "'몰리브데늄 카바이드'를 메조다공성 구조로 만들게 되면 겉에 그래핀 층이 여러 겹 생기고 이 상태에서 '몰리브데늄 카바이드'만 제거하면 그래핀 튜브로 이뤄진 메조다공성 탄소를 얻을 수 있다"고 설명했다. 이 물질과 루테늄을 함께 쓴 촉매는 상용 촉매(루테늄, 백금)보다 높은 성능을 보였다. 실제 상용화된 수소생산 장치에서도 우수한 성능을 보였다. 이 실험을 진행한 KIST 김진영 박사는 "차세대 수소생산 장치로 각광받고 있는 알칼리 고체막 물분해 장치의 성능 향상에 큰 전기를 마련한 연구"라고 전했다. 또한 이 소재는 에너지 저장장치로도 쓰일 가능성이 충분하다고 연구진은 설명했다. 에너지 저장장치 중 하나인 리튬이온 커패시터에서 그래핀 메조다공성 탄소는 기존 메조다공성 탄소 대비 우수한 에너지 저장 성능을 보였다. 이번 연구결과는 화학 분야 권위지인 '앙게반테 케미'에 12일자로 온라인 출판됐다. monarch@fnnews.com 김만기 기자
2020-11-17 10:57:07[파이낸셜뉴스] 구순구개열 등 구강·안면 기형 환자가 착용하는 보형물의 항균성을 높이는 제작 소재가 개발됐다. 연세대학교 치과대학 교정과학교실 최성환 교수, 만갈 웃커시(Mangal Utkarsh) 박사와 치과생체재료공학교실 권재성 교수 연구팀은 구강·안면 보형물을 만드는 기존 소재의 세균 오염 취약성 등 단점을 보완한 신재료를 개발했다고 12일 밝혔다. 입술이 갈라져 태어난 구순구개열과 같은 선천성 기형, 구강암 수술로 얼굴 일부를 절제한 기형 환자들은 구강 기능과 심미성을 높이기 위한 보형물을 착용한다. 이때 보형물은 침 등으로 인해 세균 감염 등에 취약해 제작 소재의 항균성이 중요하다. 보형물 제작에는 폴리메틸메타크릴레이트(PMMA)소재를 많이 사용한다. PMMA는 강도가 높고 인체에 무해해 생체적합성이 높다. 하지만 소재 자체가 더러워지지 않는 방오성이 낮아 구강 장치 표면에 박테리아·곰팡이들이 달라붙어 세균막을 형성하면서 세균이 비정상적으로 많아지는 세균 불균형 상태를 초래한다. 연구팀은 PMMA의 한계점을 보완할 수 있는 소재 i-PMMA를 개발했다. i-PMMA가 침 등 액체로 인해 세균에 취약했던 점을 보완하기 위해 폴리베테인 재료로 소재를 덧입혀 친수성을 높였다. 오염도 평가 결과 i-PMMA에서 기존 PMMA보다 소재 표면에 곰팡이 생성 정도가 70% 줄었다. 또한, 액체로 인한 세균막 생성도는 40% 넘게 감소했다. 이어 연구팀이 i-PMMA 표면에 생긴 세균막을 샷건 메타게놈 시퀀싱으로 분석했을 때, 기존 PMMA 소재와는 달리 유익균인 와이셀라의 발현량이 2.3배 증가해 세균 불균형 상태를 억제하는 것으로 확인했다. 연구팀은 i-PMMA가 산화세륨을 자체 발현하게 했다. 산화세륨은 상처를 치유하고 염증 반응을 낮추는 물질이다. 산화세륨의 인체 전달력을 높이기 위해 10억분의 1m 크기의 구멍으로 이뤄진 메조다공성 나노실리카(SBA-15) 재료를 소재 제작에 사용했다. 기능 평가 결과 i-PMMA가 발현하는 산화세륨이 염증 반응을 40% 감소시켰고, 항산화 단백질인 SOD1 발현량을 60% 더 증가시켰다. 또 피부 생성을 유도하는 콜라겐 출현을 막는 MMP 효소 발현량도 산화세륨으로 인해 PMMA 대비 2.6배 줄었다. 최성환 교수는 “틀니, 보형물 등 구강·안면 치료기 제작에도 단순 처방을 넘어 환자 건강과 회복을 최대한 추구하기 위해 제작 소재 개발이 중요하다”며 “i-PMMA 소재 개발로 세균 감염에 취약한 구강·안면 기형 환자들이 기존보다 항균성이 높은 보형물을 사용할 수 있게 될 것으로 기대한다”고 말했다. camila@fnnews.com 강규민 기자
2023-04-12 09:10:21[파이낸셜뉴스] 한국재료연구원(KIMS)은 표면재료연구본부 송명관 박사팀이 극한환경에서도 작동하는 고효율의 고체 섬유형 태양전지를 개발했다고 14일 밝혔다. 이 고체섬유형 태양전지는 실험군 대비 약 36% 향상시킨 5.3% 이상의 광전변환효율(PCE)을 가지고 있다. 이 섬유형 태양전지 기술은 낮은 단가와 간단한 합성방법을 이용해 대량생산이 가능해 미래 웨어러블 및 프린터블 시장을 주도할 것으로 보인다. 송명관 박사는 "향후 배터리와 같은 에너지 저장장치와 접목시켜 다양한 휴대용 전자기기의 전원공급 장치로 활용할 수 있을 것"이라고 전망했다. 전하가 이동하는 다공성-이산화티타늄층은 단위 부피당 표면적 값이 높아 광활성층인 염료의 흡착성이 우수하다는 장점이 있지만, 높은 밴드갭으로 가시광선 영역에서의 빛 수확이 어렵다는 단점이 있다. 연구진은 이를 보완하기 위해 광촉매가 합성된 전하수송층 소재 개발에 집중했다. 연구진은 다공성-이산화티타늄층에 은이 내장돼 있는 이산화규소 나노입자를 합성해 국부적 표면 플라스몬 공명(LSPR)을 통해 향상된 광 수확과 전하수송 효과를 얻었다. 연구진은 롤투롤 공정이 가능한 섬유형 태양전지를 개발한 바 있다. 기술의 핵심 소재를 개발한 CEN의 한상철 박사는 "세계 최초로 메조포러스 실리카 나노입자(MSNs)를 대량생산 할 수 있는 CEN의 SMBTM기술을 통해서 태양광 발전효율에 획기적 기틀이 마련되기를 바라며, 4차 산업과 우리 정부가 추구하는 재생에너지 및 2050 탄소중립 비전 정책에도 기여할 수 있기를 바란다."고 말했다. 현재 연구진은 이 기술을 배터리와 접목시켜 에너지 생산뿐만 아니라 저장까지 가능하도록 하는 에너지 융합연구를 수행 중에 있다. 이 태양전지는 ㈜CEN 연구총괄책임자인 한상철 박사와 부산대학교 이형우 교수, 한국항공대학교 신명훈 교수와 함께 연구를 진행했다. 이번 연구결과는 응용 물리, 소재 과학 분야의 세계적 학술지인 '나노 리서치'에 1월 10일자 표지논문으로 선정됐다. monarch@fnnews.com 김만기 기자
2020-12-14 09:12:21[파이낸셜뉴스] 기초과학연구원(IBS) 나노입자 연구단 단장인 현택환 서울대 석좌교수가 올해 노벨상 수상 유력 후보에 올랐다. 크기가 균일한 나노입자를 대량 합성할 수 있는 '승온법' 개발로 나노입자의 응용성을 확대한 공로다. 2004년에 발표한 합성법은 현재 전 세계 실험실뿐만 아니라 화학 공장에서도 표준 나노입자 합성법으로 널리 쓰이고 있다. 글로벌 정보서비스 기업 '클래리베이트 애널리틱스'는 23일 물리, 화학, 생리의학, 경제학 분야에서 노벨상 수상이 유력한 전 세계 연구자 24명을 선정해 발표했다. 현택환 교수는 이날 "서울대 교수로 임용될 당시 미국 박사과정에서 연구해왔던 분야가 아닌 새로운 분야에 도전해보자는 결심을 했고, 그 당시에 떠오르던 나노과학 분야 연구에 뛰어들게 됐다"고 말했다. 연구 논문의 피인용 빈도가 상위 0.01% 이내이며 해당 분야에 혁신적 공헌을 해 온 연구자들이 매년 선정된다. 2002년부터 2019년까지 선정된 연구자 중 54명이 실제로 노벨상을 받았으며, 이중 29명은 2년 내 노벨상을 수상했다. 한국인이 명단에 이름을 올린 건 이번이 세 번째다. 현 교수는 20년 넘게 나노과학 분야를 연구해온 세계적 석학이다. 지금까지 발표한 400편 이상의 선도적인 논문들은 관련 연구자들에게 귀감이 되고 있다. 그중 7편의 논문은 1000회 이상 인용됐다. 화학 분야에서 1000회 이상 인용된 논문의 수는 전체 논문의 약 0.025%에 불과하다. 이번 선정에는 '나노입자를 균일하게 합성할 수 있는 표준 합성법 개발' 관련 성과가 중요한 근거가 됐다. 그는 완전히 새로운 접근으로 원하는 크기의 균일한 나노입자를 만들어낼 방법을 고안해냈다. 기존 방식으로 나노물질을 합성하면, 입자의 크기가 저마다 다르게 생산돼 필요한 크기의 입자만 골라 사용해야 했다. 현 교수는 다양한 시도 끝에 실온에서 서서히 가열하는 승온법으로 바로 균일한 나노입자 합성에 성공했다. 이 연구는 2001년 미국화학회지(JACS)에 게재됐으며, 현재까지 1660회 인용됐다. 이후 균일한 나노입자의 대량 합성 방법을 개발해 2004년 12월 '네이처 머터리얼스(3000회 인용)'에 발표했다. 현 교수는 2012년 기초과학연구원(IBS)에 합류해 나노입자 연구단을 이끌고 있다. 특히, 올해는 그의 연구 인생에 있어 '기적의 해'로 평가될 만큼 네이처와 사이언스 등 주요 학술지에 우수한 연구성과들을 연달아 발표하며 국제 과학계에서 다시금 주목받고 있다. 현 교수는 "묵묵히 함께 연구를 해 온 제자들과 공동연구를 수행했던 동료과학자들의 도움, 그리고 장기간 한 분야에서 꾸준히 연구할 수 있었던 상황 덕분에 이 같은 영예를 얻을 수 있었다"며 "연구자를 믿고 중장기적 관점에서 지원해준 과학기술정보통신부, 서울대, 기초과학연구원에 진심으로 감사한다"고 말했다. 한편, IBS 소속으로는 현택환 단장을 포함해 지금까지 세 명의 연구자가 노벨상 수상 유력 후보로 선정됐다. 2014년 유룡 IBS 나노물질 및 화학반응 연구단장(KAIST 교수)은 기능성 메조다공성물질 설계 관련 연구로, 2018년 로드니 루오프 IBS 다차원 탄소재료 연구단장(UNIST 교수)은 탄소 소재 기반 슈퍼커패시터 연구로 명단에 이름을 올렸다. monarch@fnnews.com 김만기 기자
2020-09-23 15:42:34[파이낸셜뉴스] 정부가 올해 초 '수소경제 활성화 로드맵'을 발표하고 정기적 정책으로 수소경제를 추진하고 있는 가운데 국내 연구진들이 수소생산에 필요한 기술들을 속속 개발해 내고 있다. KAIST는 생명화학공학과 이진우 교수 연구팀이 수소 생산하는 과정에서 쓰이는 백금의 사용을 최소화하면서 성능을 16배 높일 수 있는 백금 기반 촉매를 개발했다고 3일 밝혔다. 또 GIST도 신소재공학부 이상한 교수 연구팀이 태양광을 활용해 수소를 생산하는 광전극의 내구성을 향상시키는 기술을 개발했다고 밝혔다. 에너지공급의 대부분을 해외에 의존하고 있는 우리나라의 경우 화석연료를 수소로 대체함으로써 국가경제 부담을 크게 줄일 수도 있다. 또한 온실가스 배출 및 미세먼지를 줄임으로써 최근 문제시 되고 있는 대기질 개선은 물론 온실가스의 저감을 통해 기후변화 대응에도 크게 기여하는 것이다. 백금 기반 촉매들은 성능과 안정성이 높아 다양한 전기화학 촉매 분야에서 활용됐지만, 가격이 높아 상용화에 어려움이 있었다. KAIST 이진우 교수 연구팀은 "해당 연구는 물 분해 방식뿐만 아니라 연료전지 기술과 같은 다양한 전기화학 촉매 분야에 응용될 수 있다"고 밝혔다. 연구팀은 백금의 활용도를 높이기 위해 백금을 단일원자 형태로 텅스텐 산화물 표면에 고분산 시켜 물분해 방식의 수소 생산 촉매에서 높은 성능을 구현했다. 연구팀은 이번에 백금과 강한 시너지 효과를 낼 수 있는 메조 다공성 텅스텐 산화물을 단일 원자 촉매의 지지체로 사용했다. 이를 통해 백금 단일 원자를 텅스텐 산화물에 담지했을 때, 텅스텐 산화물에서 백금 단일 원자로 전하 이동이 일어나 백금의 전자구조가 변하는 것을 확인했다. 이진우 교수는 "이번에 개발한 촉매는 기존 단일 원자 촉매 연구와 다른 관점에서 접근한 연구로 학술적으로 이바지하는 바가 크다"라며 "이번 연구를 통해 단일 원자 촉매 개발의 독보적 기술을 확보했다"라고 말했다. GIST 이상한 교수 연구팀의 연구성과는 고밀도를 갖는 광전극 박막 증착법이 태양광을 이용한 지속적 물 분해 수소 생산 기술에 기여할 것으로 기대된다. 이상한 교수는 "광전기화학전지 물 분해를 통해 수소 생산의 실용화를 위해서는 광전극의 장시간 안정성이 요구되는데 본 연구에서 적용한 펄스드 레이저 증착법과 같은 물리적 기상 증착법을 이용하면 내구성 있는 광전극 제작이 가능하고, 광전극의 안정성을 높일 수 있을 것으로 기대한다" 고 밝혔다. 연구팀에 의해 고안된 고밀도 이종 구조 광음극 박막의 태양광을 이용한 광전류 밀도는 단일층 구리 비스무스 산화물 광음극 광전류 밀도에 비해 1.5배 향상됐다. 특히 고밀도 이종 구조 광음극 박막은 암전류 증가없이 8시간 이상 안정적으로 광전류 밀도가 유지되는 것을 확인했다. 장시간 안정성은 기존에 보고된 용액 공정으로 제작된 구리 비스무스 산화물 광음극의 안정성 테스트 시간(2~3시간) 보다도 약 3배 이상 지속된 시간이다. monarch@fnnews.com 김만기 기자
2019-10-03 12:19:51올해 IUPAC(International Union of Pure and Applied Chemistry·국제순수응용화학연합) 설립 100주년과 멘델레예프의 원소주기율표 발표 150주년을 맞아, 이를 기념하는 심포지엄이 열린다. 한국화학연구원과 한국과학기술원(KAIST)은 12일 대전 유성구 한국화학연구원 디딤돌플라자에서 ‘IUPAC 100주년 및 국제주기율표의 해* 기념 심포지엄’을 개최한다. UN은 멘델레예프의 원소주기율표 발표 150주년을 기념하기 위해 2019년을 국제주기율표의 해(IYPT)로 선포했다. 이날 행사에는 한국화학연구원 김창균 원장 직무대행, 한국과학기술원 신성철, 총장, 대한화학회 하현준 회장, IUPAC 이규호 집행위원 등 국내 화학계 인사가 대거 참석한다. 특히 노벨상에 근접했다는 평가를 받는 유룡 교수, 유무기 하이브리드 나노세공체(MOF) 분야 전문가 장종산 박사, 전 세계 페로브스카이트 태양전지 연구를 선도하는 서장원 박사 등 화학계 연구자들이 참석해 최근 에너지 분야의 화학 연구 동향에 대해 발표한다. 한국화학연구원 김창균 원장 직무대행은 “화학산업은 국내 제조업의 16%를 차지할 만큼 중요하지만 케미포비아라는 신조어가 생길 정도로 화학에 대한 인식이 나빠졌다”면서 “화학에 대한 국민들의 인식을 개선하고 화학 연구성과가 국민들에게 친숙하게 다가갈 수 있게 노력하겠다”고 말했다. 이번 심포지엄은 ‘Chemistry for Energy' 주제로 지구온난화와 미세먼지의 원인인 에너지 문제 해결을 위한 화학의 역할과 중요성을 알리는 기조강연과 세션 등이 마련된다. 기조강연은 유룡(기초과학연구원·한국과학기술원) 교수가 ‘메조다공성 제올라이트 촉매를 활용한 석유화학공업의 지속가능성 향상 전망’에 대해 발표한다. 세션 1부에서는 장종산(한국화학연구원) 박사의 ‘에너지 절약 및 열에너지 관리를 위한 차세대 기능성 소재로써의 금속유기골격화합물’, 송현준(한국과학기술원) 교수의 ‘광화학 및 전기화학적 에너지 변환을 위한 나노촉매 디자인’, 강영구(한국화학연구원) 박사의 ‘차세대 리튬이차전지: 재료·화학적 연구방향’에 대한 발표가 진행된다. 세션 2부에서는 박정영(기초과학연구원·한국과학기술원) 교수의 ‘재생에너지 및 나노촉매 응용을 위한 상압 표면화학 연구’, 서장원(한국화학연구원) 박사의 ‘고효율 고안정성 페로브스카이트 태양전지’, 김형준(한국과학기술원) 교수의 ‘이론화학을 통한 에너지 재료의 이해와 예측 및 설계’에 대한 발표가 이어진다. 이번 심포지엄은 한국화학연구원과 한국과학기술원 주관, 대한화학회와 한국화학연구원, 한국과학기술원 주최, IUPAC과 기초과학연구원 후원으로 열린다. seokjang@fnnews.com 조석장 기자
2019-06-10 13:38:06국내 연구팀이 기존 리튬 이온 2차전지를 대체할 리튬-황 2차전지의 성능을 높이는 데 성공했다.KAIST는 27일 생명화학공학과 이진우 교수 연구팀이 서로 다른 크기의 기공을 갖는 구조의 무기소재 합성을 통해 황 담지체를 개발했다고 밝혔다.연구팀은 다차원 상분리 현상을 동시에 유도해 각기 다른 두 종류, 크기의 기공을 갖는 티타늄질화물을 합성했고 이를 황 담지체로 활용해 우수한 수명 안정성과 속도를 갖는 리튬-황 2차전지를 구현했다. 이 교수는 "리튬-황 2차전지는 여전히 해결해야 할 문제점이 많다"고 지속적인 연구 필요성을 강조했다. 그러나 그는 "이 연구를 통해 안정적인 수명을 지닌 양극 소재 개발의 독보적 기술을 확보했다"고 말했다.전기차, 스마트 그리드 등의 기술은 대용량 에너지를 제어해야 하는 시스템으로 이를 활용하기 위한 차세대 2차전지 개발의 필요성이 더욱 커지고 있다.리튬-황 2차전지는 이론적으로 기존 리튬 이온 2차전지보다 약 7배 이상 높은 에너지 밀도 특성을 보인다. 또한 황의 저렴한 가격은 전지 생산 단가를 급격히 낮춰줄 수 있을 것으로 기대되고 있다.그러나 리튬-황 2차전지 음극과 양극에서 많은 문제점이 있어 상용화에 한계가 있다. 특히 양극에서는 황의 낮은 전기 전도도와 황이 충·방전 과정에서 전극으로부터 새어나가는 현상이 문제점으로 남아있다.연구팀은 문제 해결을 위해 50나노미터 이상 크기의 매크로 기공과 50나노미터 이하의 메조 기공을 동시에 지닌 계층형 다공성 구조의 티타늄질화물 기반의 황 담지체를 개발했다. 구조적 시너지 효과로 인해 많은 양의 황을 안정적으로 담으면서도 높은 수명 안정성 및 속도 특성을 보임을 확인했다. 김만기 기자
2019-01-27 18:11:11국내 연구팀이 기존 리튬 이온 2차전지를 대체할 리튬-황 2차전지의 성능을 높이는 데 성공했다. KAIST는 27일 생명화학공학과 이진우 교수 연구팀이 서로 다른 크기의 기공을 갖는 구조의 무기소재 합성을 통해 황 담지체를 개발했다고 밝혔다. 연구팀은 다차원 상분리 현상을 동시에 유도해 각기 다른 두 종류, 크기의 기공을 갖는 티타늄질화물을 합성했고 이를 황 담지체로 활용해 우수한 수명 안정성과 속도를 갖는 리튬-황 2차전지를 구현했다. 이 교수는 "리튬-황 2차전지는 여전히 해결해야 할 문제점이 많다"고 지속적인 연구 필요성을 강조했다. 그러나 그는 "이 연구를 통해 안정적인 수명을 지닌 양극 소재 개발의 독보적 기술을 확보했다"고 말했다. 전기차, 스마트 그리드 등의 기술은 대용량 에너지를 제어해야 하는 시스템으로 이를 활용하기 위한 차세대 2차전지 개발의 필요성이 더욱 커지고 있다. 리튬-황 2차전지는 이론적으로 기존 리튬 이온 2차전지보다 약 7배 이상 높은 에너지 밀도 특성을 보인다. 또한 황의 저렴한 가격은 전지 생산 단가를 급격히 낮춰줄 수 있을 것으로 기대되고 있다. 그러나 리튬-황 2차전지 음극과 양극에서 많은 문제점이 있어 상용화에 한계가 있다. 특히 양극에서는 황의 낮은 전기 전도도와 황이 충·방전 과정에서 전극으로부터 새어나가는 현상이 문제점으로 남아있다. 이를 해결하기 위해 황을 안정적으로 담을 수 있는 그릇 역할의 소재, 즉 황 담지체에 대한 연구가 활발하게 이뤄지고 있다. 기존 극성 표면의 무기 소재들은 황과 강한 작용력을 갖지만 무기 소재의 구조적 특성 제어를 할 방법이 부족해 황 담지체로 개발하기에는 한계가 있었다. 이번 연구는 독창적인 합성법을 개발함으로써 이 한계점을 극복했다. 연구팀은 문제 해결을 위해 50나노미터 이상 크기의 매크로 기공과 50나노미터 이하의 메조 기공을 동시에 지닌 계층형 다공성 구조의 티타늄질화물 기반의 황 담지체를 개발했다. 티타늄질화물은 황과의 화학적 작용력이 매우 강하고 전기 전도도가 높아 충·방전 과정에서 황이 전극으로부터 빠져나가는 것을 막아주고 황의 전기화학적 산화, 환원 반응을 빠르게 해준다. 연구팀은 매크로 기공과 메조 기공의 구조적 시너지 효과로 인해 많은 양의 황을 안정적으로 담으면서도 높은 수명 안정성 및 속도 특성을 보임을 확인했다. 포스텍 화학공학과 한정우 교수와 공동으로 진행하고 임원광 석박사통합과정이 1저자로 참여한 이 연구는 재료 분야 국제 학술지 '어드밴스드 머티리얼즈(Advanced Materials)' 15일자 표지논문에 게재됐다. monarch@fnnews.com 김만기 기자
2019-01-27 11:34:19한국과학기술원(KAIST) EEWS대학원 신소재공학과 강정구 교수 연구팀이 다공성 금속 산화물 나노입자와 그래핀을 이용해 고성능, 고안정성을 갖는 물 기반 하이브리드 에너지 저장 소자를 개발했다. 이 하이브리드 소자는 기존 배터리에 비해 100배 이상 빠른 출력 밀도를 보이며 수십 초 내로 급속 충전이 가능해 소형의 휴대용 전자기기 등에 활용될 수 있을 것으로 기대된다. 강원대학교 정형모 교수 연구팀과 공동으로 진행된 이번 연구 결과는 재료 분야 국제 학술지 ‘어드밴스드 펑셔널 머티리얼즈(Advanced Functional Materials)’ 8월 15일자에 온라인 판에 게재됐다. 리튬 이온 배터리를 비롯한 기존 유계 에너지 저장 소자는 넓은 전압 범위와 높은 에너지 밀도를 갖지만 유기 전해질의 사용에 따른 화재 등의 안전 문제가 뒤따른다. 또 전기화학적 반응 속도가 느리기 때문에 소자를 충전하는데 긴 시간이 필요하고 사이클이 짧다는 한계가 있다. 이에 반해 수계 전해질 기반 에너지 저장 소자는 안전하고 친환경적 소자로써 주목받고 있다. 하지만 제한된 전압 범위와 낮은 용량으로 인해 유계 기반 소자에 비해 에너지 밀도가 낮은 단점을 가지고 있다. 연구팀은 금속 산화물과 그래핀을 결합한 뒤 수계 기반 전해질을 사용해 높은 에너지 밀도, 고출력, 우수한 사이클 특성을 갖는 에너지 저장 전극을 개발했다. 이번 연구에서 개발한 다공성의 금속 산화물 나노 입자는 2~3 나노미터 크기의 나노 클러스터로 이루어져 있으며 5 나노미터 이하의 메조 기공이 다량으로 형성돼 있다. 이러한 다공성 구조에서는 이온이 물질 표면으로 빠르게 전달되며 작은 입자크기와 넓은 표면적에 의해 짧은 시간 동안 많은 수의 이온이 금속 산화물 입자 내부에 저장된다. 연구팀은 철과 망간, 두 종류의 다공성 금속 산화물을 양극과 음극에 각각 적용해 2V의 넓은 전압 범위에서 작동 가능한 수계 전해질 기반 하이브리드 소자를 구현했다. 강 교수는 “다공성의 금속 산화물 전극이 가진 기존 기술 이상의 고용량, 고출력 특성은 새로운 개념의 에너지 저장장치의 상용화에 기여할 것이다”며 “수십 초 내의 급속 충전이 가능하기 때문에 휴대폰, 전기자동차 등의 주전원이나 태양에너지를 전기로 직접 저장해 플렉서블 기기에 적용될 수 있을 것”이라고 말했다. 이번 연구는 과학기술정보통신부 글로벌프론티어사업의 하이브리드인터페이스기반 미래소재연구단의 지원을 받아 수행됐다. seokjang@fnnews.com 조석장 기자
2018-08-24 13:27:33국내 연구진이 고분자를 이용해 다공성 무기질 소재를 정교하게 설계할 수 있는 기술을 개발했다. 한국연구재단은 4일 한국과학기술원 이진우 교수 연구팀이 형상과 구조를 정밀하고 손쉽게 제어할 수 있는 기능성 다공소재 합성 기술을 개발했다고 밝혔다. 물질 내부에 2~50nm(나노미터, 1nm=10억분의 1m)의 기공을 가지고 있는 메조다공성 소재는 표면적이 넓고 기공 부피가 커서 물질 이동이 용이하다. 또 많은 활성물질을 담을 수 있어 에너지 전환 및 저장장치, 약물전달, 촉매 등 다양한 분야의 기초소재로 주목받고 있다. 하지만 합성 절차가 복잡하고 모양과 구조 제어가 어려워 소재 활용에 한계가 있었다. 지금까지 메조다공성 소재의 입자 형태와 기공 구조를 제어하려면 크기가 다른 주형을 순차적으로 사용하거나 스프레이 기법과 같은 별도의 기기가 필요했다. 이러한 방법은 입자의 형태와 크기 같은 매크로 구조와 기공의 크기, 구조, 배향과 같은 나노구조를 동시에 제어하지 못해 범용적으로 사용할 수 있는 새로운 합성기술 개발이 필요했다. 연구팀은 둘 이상의 고분자를 섞어 원하는 성질을 실현하는 고분자 블렌드라는 독창적인 방법을 도입했다. 이어 필요한 물질을 섞은 뒤 열처리하는 두 단계의 과정만으로 메조다공성 입자의 크기와 형상은 물론 기공의 구조·크기·조성을 정밀하게 조절하는 합성 원천기술을 개발하는 데 성공했다. 개발된 기술은 2종 이상의 필요한 물질을 외부적인 기계 에너지를 사용하여 균일한 혼합 상태로 만든 후 열처리하면 별도의 추가 공정 없이 간단하게 메조다공성 무기 소재 입자를 만들 수 있는 새로운 방식이다. 이처럼 고분자 블렌드의 거동을 다공성 무기 소재 합성에 적용한 것은 연구팀이 처음이다. 이진우 교수는 “이 연구는 다공성 무기질 소재의 입자 외형뿐 아니라 내부 기공의 크기와 모양도 정교하게 설계하는 방법을 제시한 것”이라며 “이차전지 등 실용적인 연구에 적용할 수 있을 뿐 아니라 고분자화학 분야와 소재합성 분야 연구에 새로운 가능성을 제시할 수 있을 것으로 예상한다”고 연구의 의의를 설명했다. 이 연구 성과는 과학기술정보통신부·한국연구재단 기초연구사업의 지원으로 수행되었으며, 재료 분야의 세계적 학술지 어드밴스드 머티리얼즈(Advanced Materials) 7월 5일 자 표지논문으로 게재됐다. seokjang@fnnews.com 조석장 기자
2018-07-04 10:25:15