포항공과대학교(POSTECH) 화학공학과 김철주 교수팀이 국제공동연구를 통해 원자 하나 정도의 두께인 얇은 막을 웨이퍼 크기로 만드는 기술을 개발했다. 연구진은 100%에 가까운 수율로 얇은 막을 만들어 층층이 쌓는데 성공했다고 밝혔다. 또한 비틀어 쌓거나 차곡차곡 쌓는 등 겹겹이 쌓는 방식을 달리해 전혀 새로운 물질을 개발할 수 있다고 설명했다. 김철주 교수는 21일 "이전까지는 매우 작은 크기의 제한된 기술 개발에 머물렀지만, 이번 연구를 통해 세계 최초로 웨이퍼 크기에서 원자 수준의 정밀한 조립이 가능해 향후 새로운 나노소자 개발에 응용할 수 있다"고 말했다. 연구진에 따르면, 원자 하나 두께의 막은 두께나 원자 구조에 따라 다양한 물리적 특성을 지닌다. 이 막을 차곡차곡 쌓거나 비틀어 쌓는 등 쌓는 방식을 바꾸면 각기 다른 물성을 구현할 수 있다. 그러나 웨이퍼 크기의 큰 막을 조립하면 접촉면이 쉽게 오염돼 새로운 성질이 나타나지 않았다. 연구진은 두 원자가 서로 끌어당기는 인력인 반데르발스 상호작용을 이용해 얇은 막을 쌓는 기술을 개발했다. 이 기술로 원자 하나 두께의 그래핀과 육방정 질화붕소를 조립했다. 그 결과, 깨끗한 접촉면을 가진 웨이퍼 크기 박막을 거의 100%의 수율로 만들었다. 연구진은 이 기술로 지금까지는 크기가 작아 실제 디바이스로 활용하기 어려웠던 인공 결정 박막도 웨이퍼 크기로 대량생산할 수 있다고 설명했다. 또한 물질의 구조를 원자 수준에서 조절할 수 있기 때문에, 새로운 형태로 빛을 내거나 전기가 흐르는 새로운 물질 개발도 가능하다고 말했다. 이번 연구는 김철주 교수팀의 통합과정 양성준·정주현 씨와 포항가속기연구소 황찬국·이은숙 박사, 미국 일리노이대 어바나-샴페인캠퍼스(UIUC)와의 공동으로 진행해 국제 학술지 '나노 레터스(Nano Letters)'에 표지논문으로 최근 선정됐다. 김만기 기자
2022-03-21 18:24:54[파이낸셜뉴스] 포항공과대학교(POSTECH) 화학공학과 김철주 교수팀이 국제공동연구를 통해 원자 하나 정도의 두께인 얇은 막을 웨이퍼 크기로 만드는 기술을 개발했다. 연구진은 100%에 가까운 수율로 얇은 막을 만들어 층층이 쌓는데 성공했다고 밝혔다. 또한 비틀어 쌓거나 차곡차곡 쌓는 등 겹겹이 쌓는 방식을 달리해 전혀 새로운 물질을 개발할 수 있다고 설명했다. 김철주 교수는 21일 "이전까지는 매우 작은 크기의 제한된 기술 개발에 머물렀지만, 이번 연구를 통해 세계 최초로 웨이퍼 크기에서 원자 수준의 정밀한 조립이 가능해 향후 새로운 나노소자 개발에 응용할 수 있다"고 말했다. 연구진에 따르면, 원자 하나 두께의 막은 두께나 원자 구조에 따라 다양한 물리적 특성을 지닌다. 이 막을 차곡차곡 쌓거나 비틀어 쌓는 등 쌓는 방식을 바꾸면 각기 다른 물성을 구현할 수 있다. 그러나 웨이퍼 크기의 큰 막을 조립하면 접촉면이 쉽게 오염돼 새로운 성질이 나타나지 않았다. 연구진은 두 원자가 서로 끌어당기는 인력인 반데르발스 상호작용을 이용해 얇은 막을 쌓는 기술을 개발했다. 이 기술로 원자 하나 두께의 그래핀과 육방정 질화붕소를 조립했다. 그 결과, 깨끗한 접촉면을 가진 웨이퍼 크기 박막을 거의 100%의 수율로 만들었다. 연구진은 이 기술로 지금까지는 크기가 작아 실제 디바이스로 활용하기 어려웠던 인공 결정 박막도 웨이퍼 크기로 대량생산할 수 있다고 설명했다. 또한 물질의 구조를 원자 수준에서 조절할 수 있기 때문에, 새로운 형태로 빛을 내거나 전기가 흐르는 새로운 물질 개발도 가능하다고 말했다. 이번 연구는 김철주 교수팀의 통합과정 양성준·정주현 씨와 포항가속기연구소 황찬국·이은숙 박사, 미국 일리노이대 어바나-샴페인캠퍼스(UIUC)와의 공동으로 진행해 국제 학술지 '나노 레터스(Nano Letters)'에 표지논문으로 최근 선정됐다. monarch@fnnews.com 김만기 기자
2022-03-21 13:42:14[파이낸셜뉴스] 국내 연구진이 공기중 78%를 차지하는 질소를 암모니아로 만드는 촉매를 개발했다. 이 촉매를 이용하면 이산화탄소를 배출하지 않고도 수소를 저장하는 암모니아를 만들 수 있어 친환경적이다. 대구경북과학기술원(DGIST)은 에너지공학전공 상가라쥬 샨무감 교수팀이 공기 중 질소를 암모니아로 만드는 촉매를 개발했다고 13일 밝혔다. 연구진은 얇은 육방정 질화붕소 시트 위에 질화몰리브덴 나노입자가 올라간 촉매를 만들었다. 이렇게 만들어진 촉매는 지금껏 존재하는 촉매중 가장 높은 암모니아 생산 활성률과 61.5%의 패러데이 효율을 보였다. 또한 가장 안정적인 성능과 내구성을 기록했다. 패러데이 효율은 반응을 일으키는 데 사용되는 전류를 100으로 두고, 원하는 반응에 사용된 전류가 그 중 얼마인지 측정하는 것을 뜻한다. 암모니아는 비료나 수소운반체 등 다양한 분야에 활용되는 귀한 화학 원재료다. 하지만 암모니아를 합성하는데 사용되는 기존 방식인 '하버-보슈법'은 인류가 배출하는 전체 이산화탄소의 1~2%를 차지할 만큼의 많은 이산화탄소를 배출해, 환경파괴의 원인 중 하나로 지목돼왔다. 연구진은 전기화학적 반응을 일으켜 공기 중 질소로부터 암모니아로 합성하는 '질소환원반응(NRR)'을 이용한 방식을 제시했다. 연구진은 새롭게 개발한 촉매를 이용해 질소 환원 반응을 일으킬 경우, 공기 중 질소가 액체화되면서 암모니아를 합성할 수 있다고 밝혔다. 또한 기존 방식보다 암모니아를 합성하는데 있어 상대적으로 낮았던 효율성 문제도 함께 해결해, 관련 연구가 갖고 있던 한계도 극복했다. 샨무감 교수는 "이번에 개발한 암모니아 합성 촉매는 합성과정에서 발생되는 이산화탄소가 없고, 여러 합성 준비 단계를 거치지 않고 바로 단 한 번만의 반응으로 암모니아 합성이 가능하다"고 말했다. 한편, 이번 연구결과는 에너지 및 환경 분야에서 국제적 저널인'응용 촉매 B-환경(Applied Catalysis B: Environmental)'에 게재됐다. monarch@fnnews.com 김만기 기자
2021-04-13 10:22:35[파이낸셜뉴스] 국내 연구진이 방대한 양의 빅데이터 처리나 인간의 두뇌를 모방한 뉴로모픽 칩과 같은 인공지능(AI) 개발을 위한 차세대 지능형반도체 소자기술을 개발했다. 대구경북과학기술원(DGIST)은 나노융합연구부 이명재 박사 연구팀이 2차원 반도체 소재인 이황화텅스텐과 육방정 질화붕소를 이용해 3진법 적용이 가능한 2차원 소재 기반의 다치(多値)논리소자를 개발했다고 12일 밝혔다. 현재 대부분의 컴퓨터는 '0'과 '1'을 사용하는 2진법 기반이다. 반도체나 집적회로(IC) 같은 컴퓨터 산업도 2진법을 기반으로 발전해왔다. 하지만 현재에는 빅데이터 처리나 복잡한 연산을 요구하기 때문에 전력 소모량 측면에서 기술적 한계에 다다르고 있다. 이 때문에 방대한 정보량을 구현하면서 전력도 줄일 수 있는 다치논리소자 연구가 세계적으로 진행 중이다. 3진법 이상의 논리가 구현 가능한 다치논리소자는 정보를 '0', '1', '2' 이상으로 처리할 수 있어, 2개의 숫자만 사용했던 기존의 2진법보다 처리해야 할 정보의 양이 줄어들어 소비전력이 적고 계산 속도가 빠르다. 이에 따라 대용량의 정보처리가 가능하면서 반도체 집적회로를 더 작게 만들 수 있는 장점이 있다. 이에 연구진은 2차원 반도체 소재인 이황화텅스텐과 육방정 질화붕소를 결합해 '0', '1', '2'인 3개의 논리상태 구현이 가능한 2차원 소재를 개발했다. 연구팀은 두 개의 2차원 반도체 소재를 수직으로 층층이 쌓아올림으로써 육방정 질화붕소 층이 인접하는 이황화 텅스텐 층 간의 전자 상호작용을 크게 줄이는 것을 확인할 수 있었다. 그리고 이것이 2차원 반도체 소재 내의 밴드갭을 제어하는 메커니즘임을 규명했다. 이를 통해 특정 전압 구간에서 전류량이 감소하는 부성미분저항 특성을 가진 다치논리소자를 새롭게 개발했다. 이 박사는 "이번에 개발한 새로운 개념의 다치논리소자는 향후 대용량 정보 처리가 필요한 AI SW 지원하는 초절전형 소자·회로 기술의 기반이 될 것"이라며, "향후 두뇌 모방형 반도체와 같은 차세대 지능형반도체 소자 기술의 적용이 기대된다"고 밝혔다. 한편 이번 연구는 DGIST 신물질과학전공 김영욱 교수 연구팀과 공동으로 진행했으며, 나노과학 분야의 국제학술지인 'ACS 나노'에 3일자 온라인 게재됐다. monarch@fnnews.com 김만기 기자
2020-11-12 10:25:11